Хочешь получить бонус 100 ₽?
заказать работу
выполнено на сервисе Автор24
Студенческая работа на тему:
Решение задач по элементарной геометрии
Создан заказ №4350776
12 ноября 2019

Решение задач по элементарной геометрии

Как заказчик описал требования к работе:
есть список задач. из каждой строчки можно взять лишь одну задачу. нужно решить 5 задач
Стоимость
работы
20 ₽
Заказчик не использовал рассрочку
Гарантия сервиса
Автор24
20 дней
Заказчик принял работу без использования гарантии
13 ноября 2019
Заказ завершен, заказчик получил финальный файл с работой
5
Автор работы
ValeryL
5
скачать
Решение задач по элементарной геометрии.
Хочешь такую же работу?
Зарегистрироваться
Рассчитай стоимость
своей работы
поиск
по базе работ
Тебя также могут заинтересовать
решение задачи различными способами
Решение задач
Геометрия
Стоимость:
150 ₽
Доказать, что в расширенном пространстве
Решение задач
Геометрия
Стоимость:
150 ₽
решение задач геометрия
Контрольная работа
Геометрия
Стоимость:
300 ₽
Аксиомы отделимости
Реферат
Геометрия
Стоимость:
300 ₽
преобразование выражений содержащих степени с целым показателем
Контрольная работа
Геометрия
Стоимость:
300 ₽
аналитическая геометрия
Решение задач
Геометрия
Стоимость:
150 ₽
Стереометрия
Решение задач
Геометрия
Стоимость:
150 ₽
Расстояние от одной точки до другой
Решение задач
Геометрия
Стоимость:
150 ₽
Алгебра и геометрия
Решение задач
Геометрия
Стоимость:
150 ₽
Геометрические построения на плоскости
Решение задач
Геометрия
Стоимость:
150 ₽
Решение задач
Решение задач
Геометрия
Стоимость:
150 ₽
Четырехугольники и их свойства
Решение задач
Геометрия
Стоимость:
150 ₽
Методы изображений
Решение задач
Геометрия
Стоимость:
150 ₽
Читай полезные статьи в нашем
Как найти площадь параллелограмма, треугольника, трапеции
Как найти площадь параллелограмма, треугольника, трапеции
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Как найти угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами, нужно сначала разобраться с самим понятием угла между этими векторами.

Причем мы будем считать, что если векторы \overline{α} и \overline{β} будут сонаправленными или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться 0^\circ .
Обозначение: ∠(\overline{α},\overline{β})
Вспомним с...
подробнее
Как найти смешанное произведение векторов
Для того чтобы мы могли ввести понятие смешанного произведения векторов, нужно сначала вспомнить понятия скалярного и векторного произведений этих векторов.
Математически это может выглядеть следующим образом:
\overline{α}\overline{β}=|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоватьс...
подробнее
Как найти площадь параллелограмма, треугольника, трапеции
Как найти площадь параллелограмма, треугольника, трапеции
подробнее
Как найти вектор, перпендикулярный вектору
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Для введения определения вектора один из концов отрезка назовем его началом.
Обозначение: \overline{AB} - вектор AB , имеющий начало в точке A , а конец в точке B .
Иначе одной маленькой буквой: \overline{a} (рис. 1).

Обозначение: \overline{0} .
Введем теперь, непосредственно, определение к...
подробнее
Как найти угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами, нужно сначала разобраться с самим понятием угла между этими векторами.

Причем мы будем считать, что если векторы \overline{α} и \overline{β} будут сонаправленными или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться 0^\circ .
Обозначение: ∠(\overline{α},\overline{β})
Вспомним с...
подробнее
Как найти смешанное произведение векторов
Для того чтобы мы могли ввести понятие смешанного произведения векторов, нужно сначала вспомнить понятия скалярного и векторного произведений этих векторов.
Математически это может выглядеть следующим образом:
\overline{α}\overline{β}=|\overline{α}||\overline{β}|cos⁡∠(\overline{α},\overline{β})
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоватьс...
подробнее