Автор24

Информация о работе

Подробнее о работе

Страница работы

Система диагностика технологических трубопроводов верхних строений МНГС

  • 80 страниц
  • 2015 год
  • 352 просмотра
  • 0 покупок
Автор работы

EkaterinaKonstantinovna

Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов

2240 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

ВВЕДЕНИЕ
Современный этап развития нефтегазовой отрасли страны характеризуется становлением морской отрасли нефтедобычи. Наиболее важным, с точки зрения обеспечения надежности при эксплуатации морских нефтегазовых сооружений является надежность технологических трубопроводных систем. Технологические трубопроводы характерезуются сложностью конфигурации технологических трубопроводных систем, «тяжелыми» условиями эксплуатации, затруднениями при проведении обслуживания и ремонта, отсутствием достоверных критериев для оценки прочности и т.д. Основными особенностями эксплуатации морских технологических трубопроводов являются:
- высокий уровень коррозии стали трубопроводов морских сооружений, особенно в зонах, смачиваемых морской водой;
- динамические нагрузки на системы трубопроводов, обусловленные многочастотными гидродинамическими пульсациями и гидравлическими ударами при сборе и транспорте углеводородов;
- требования полного исключения аварий трубопроводных систем из-за возможного экологического ущерба окружающей среде и огромных затрат на ликвидацию аварий.
Из изложенного следует, что задача оценки прочности морских технологических трубопроводов актуальна.
Существенной особенностью морских сооружений является то, что в трубопроводных системах реализуются различные динамические режимы при транспортировке углеводородов. Так, практически все действующие системы сбора углеводородов на морских месторождениях предусматривают использование однотрубной системы. Транспортировка двух и более различных фаз в потоке приводит, как правило, к возникновению пульсаций давления потока, образованию пробок и возникновению гидравлических ударов при прорыве и т.п., то есть к существенным динамическим нагружениям. С другой стороны, в условиях морской нефтедобычи в силу ограниченности размеров платформы сложно использовать известные аппараты (депульсаторы, акустические поглотители и т.п.) для снижения и подавления динамических процессов в системах трубопроводов.
Наконец, агрессивные среды, добываемые и транспортируемые по трубопроводам, вызывают внутреннюю коррозию трубопроводов и другого оборудования. Кроме того, агрессивными являются и атмосфера, и морская вода, вызывающие коррозию наружных поверхностей труб, оборудования и строительных конструкций трубопроводных обвязок.
Анализируя сложность системы технологических трубопроводов морских нефтегазовых сооружений можно прийти к выводу: учитывая необходимую надежность и безотказность работы, а так же требования экологической безопасности, необходимо поддерживать технологические трубопроводы морских нефтегазовых сооружений в состоянии годности к эксплуатации.
В настоящее время, в связи с истечением ресурса эксплуатируемых технологических трубопроводов верхних строений морских нефтегазовых сооружений (МНГС) происходит возрастание объемов и темпов проведения работ по их обследованию с целью определения текущего технического состояния. При этом все более актуальными становятся задачи по повышению объективности и достоверности получаемых результатов диагностики технологических трубопроводов, в том числе и трубопроводов МНГС.
Разработанные в настоящее время стандарты устанавливают дополнительные повышенные требования, как к получаемым результатам Неразрушающего контроля так и к определению типов и характеристикам выявляемых дефектов.
Целью работы является анализ вопроса диагностики технического состояния технологических трубопроводов верхних строений МНГС.
Для достижения цели работы поставлены задачи:
- Оценка работоспособности технологических трубопроводов морских и нефтегазовых сооружений;
- обоснование необходимости диагностики технологических трубопроводов верхних строений МНГС;
- нахождение основных причин появления дефектов трубопроводов;
- обзор и анализ применяемых методов диагностики трубопроводов МНГС;
- выбор наиболее технически совершенного метода.
Для выбора наиболее технически совершенного метода диагностики технологических трубопроводов верхних строений МНГС необходимо провести исследование.
Целью исследования является:
- разработка алгоритма проведения диагностического обследования:
- сравнение методов диагностики трубопроводов МНГС ;
- выбор метода, который является наиболее достоверным методом определения технического состояния трубопроводов МНГС;
- обоснование возможности применения метода диагностики.
Объектом исследования работы являются технологические трубопроводы верхних строений МНГС и их обвязка.
Предметом исследования работы являются методы проведения диагностики трубопроводов МНГС и система диагностики трубопроводов МНГС в целом.

Оглавление
ВВЕДЕНИЕ 4
ГЛАВА I. Оценка работоспособности технологических трубопроводов морских и нефтегазовых сооружений 7
1.1. Обзор оценки работоспособности 7
1.2. Коррозия технологических трубопроводов 8
1.3. Особенности оценки прочности трубопроводов 10
1.4. Дефекты объекта диагностирования 12
ГЛАВА 2. Техническая диагностика трубопроводных систем верхних строений МНГС 14
2.1 Общие понятия диагностики трубопроводов 14
2.2 Компьютерное моделирование надежности трубопроводной обвязки верхних строений МНГС при помощи пакета ANSYS и Fluent 16
2.2.1 Расчет коэффициента нагрузки в системе обвязки 18
2.2.2 Фактические последствия концентраций напряжений в технологических трубопроводах 20
2.2.3.Вывод из моделирования 22
2.3. Разработка алгоритма диагностики трубопроводов верхних строений МНГС 23
ГЛАВА 3. Исследование методов диагностики трубопроводов верхних строений МНГС 24
3.1. Выбор наиболее технически совершенного метода 24
3.1.1 Отличие традиционного метода ультразвукового контроля от ультразвукового контроля с применением ФАР 25
3.2 Контроль технического состояния пластиковых труб 25
3.3 Контроль сварных соединений технологических трубопроводов 28
3.4 Диагностика оборудования трубопроводной системы верхних строений МНГС 31
ГЛАВА 4. Практическое равнение традиционного УЗК с УЗК на фазированных антенных решетках при контроле трубопроводов верхних строений МНГС 35
4.1 Аннотация исследования 35
4.2 Сравнение методов 35
4.3 Контроль сварного соединения с искусственно созданными дефектами при помощи УЗК на ФАР 40
4.4. УЗК контроль монолитных металлических конструкции с использованием ФАР 42
ГЛАВА 5. Экономическое обоснование 45
5.1. Методика оценки экономической целесообразности применения УЗК на ФАР при проведении диагностики 45
5.2 Сводные сметные затраты диагностику трубопроводов верхних строений МНГС 47
5.3. Вероятные аварийные ситуации и их последствия 49
5.4. Расчет возможного ущерба от аварии на МНГС 50
5.4.1. Структура ущерба 50
5.4.2. Обоснование прямых потерь (ущерба) 53
5.4.3. Затраты на локализацию (ликвидацию) и расследование аварии 54
5.4.4. Социально-экономические потери 54
5.4.5. Убытки от косвенного ущерба 55
5.4.6. Экологический ущерб 55
5.4.7. Потери при выбытии трудовых ресурсов 56
5.4.8. Суммарный ущерб 56
5.5. Условная экономия средств (сокращение ущерба) в результате снижения аварийности МНГС 57
ГЛАВА 6. Безопасность жизнедеятельности и охрана труда 59
6.1 Описание системы Ч-М-С 59
6.1.1 «Ч»- Описание элемента «Человек» 59
6.1.2. «М»-Описание элемента «Машина» 61
6.1.3 «С» - Описание элемента «Среда» 61
6.2 Опасные и вредные факторы 61
6.3 Причины возникновения факторов аварии 62
6.4 Оценка риска 62
6.4.1. Формирование фрейма по степени тяжести последствий от воздействия факторов 62
6.4.2. Формирование матриц 62
6.4.5 Техника безопасности при ультразвуковом контроле 64
6.5. Оформление результатов УЗК контроля на МНГС 64
ГЛАВА 7. Экология 66
7.1 Общие понятия об экологии и экологической безопасности МНГС 66
7.2. Охрана атмосферного воздуха 67
7.2.1 Характеристика видов и источников воздействия на атмосферный воздух 67
7.2.2 Оценка воздействия и обоснование мероприятий по охране атмосферного воздуха 68
7.3. Охрана поверхностных вод 68
7.3.1 Воздействие проектируемого объекта на состояние вод 68
7.3.2 Мероприятия по охране морских вод, окружающих МНГС 69
7.4 Охрана окружающей среды при складировании (утилизации) отходов производства и потребления 70
7.4.1 Перечень отходов образующихся при строительстве резервной нитки газопровода 70
7.4.2 Направления обращения с отходами 71
7.4.3 Мероприятия по охране окружающей среды от отходов 72
7.5. Организация мониторинга в диагностики трубопроводов МНГС 72
ЗАКЛЮЧЕНИЕ 74
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА 75

ЗАКЛЮЧЕНИЕ
В работе предложен подход для комплексного диагностического сопровождения технологических трубопроводных систем заключающийся в прямом измерении основных параметров: пространственного положения, эксплуатационных напряжений, размеров дефектов, твердости стали; математическом моделировании системы для оценки прочности; разработки технических решений по обеспечению работоспособности конструкций.
Эти измерения и оценки позволяют получить полное представление о состоянии и положении трубопроводной системы.
Исследована универсальная регрессионная модель расчетного напряжения в местах появления дефекта и при его наличии. В зависимости от базовых геометрических параметров дефекта для существующего диапазона типоразмеров трубопровода. Аналитически, проводя исследование, установлен эффект снижения уровня концентрации напряжений в 1,2-1,5 раза за счет учета пластических свойств стали и механизм подавления процессов трещинообразования в трубопроводе при использовании низколегированных.
Практическим исследованием различных методов диагностики технологических трубопроводов, элементов трубопроводов, а так же оборудования верхних строений МНГС был выбран наиболее технически приемлемый и экономически рентабельный метод диагностики элементов верхних строений МНГС.


ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА
1.Бородавкин П.П., Березин В.Л., Шадрин О.Б. Подводные трубопроводы. - М.: Недра, 1979.
2.Гусейнов Ч.С., Иванец В.К., Иванец Д.В. Обустройство морских нефтегазовых месторождений. - М.: ГУП Изд-во «Нефть и газ РГУ нефти и газа им. И.М. Губкина, 2003.
3.Харионовский В.В. Надежность и ресурс конструкций газопроводов. - М.: Недра, 2000.
4.Литвин И.Е., Аликин В.Н. Оценка показателей надежности магистральных трубопроводов. - М.: Недра, 2003.
5.Якубович В.А. Диагностическое обслуживание трубопроводных систем компрессорных цехов газотранспортных и газодобывающих предприятий. Автореф. дисс. соиск. уч. степ. докт. техн. наук. - М.: РГУ нефти и газа им. И.М. Губкина, 2004..
6.Гриценко А.И., Харченко Ю.А., Клапчук О.В. Гидродинамика газожидкостных смесей в скважинах и трубопроводах. - М.: Недра, 1994.
7.Харченко Ю.А. Энергосберегающие системы сбора углеводородов на месторождениях континентального шельфа. Автореф. дисс. соиск. уч. степ. докт. техн. наук. - М.: РГУ нефти и газа им. И.М. Губкина,
8.Басарыгин Ю.М., Будников В.Ф., Булатов А.И. Теория и практика предупреждения осложнений и ремонта скважин при их строительстве и эксплуатации: Справ, пособие: в 6 т. - М.: Недра, 2004. - Т. 6.
9.Алехин М.И., Будников В.Ф., Щербина М.М. О причинах коррозионного разрушения оборудования на участках термических методов добычи нефти// Сб. науч. тр. Вопросы технологии и техники добычи нефти термическим методами. - М.: ВНИИОЭНГ, 1989.
10.Аварии и несчастные случаи в нефтяной и газовой промышленности России/ Под ред. Ю.А. Дадонова, В.Я. Кершенбаума. - М.: Техно- нефтегаз, 2001.
11.Скугорова Л.П. Материалы для сооружений газонефтепроводов и хранилищ . - М.: Недра, 1975.
12.Амиров А.Д. Техника и технология освоения и эксплуатации глубоких скважин. - М.: Недра, 1970.
13.Горяинов Ю.А., Федоров A.C., Васильев Г.Г. и др. Морские трубопроводы. — М.: Недра, 2001.
14. М.Новаковский В.М.Преодоление коррозии — важнейшая задача науки/ М-лы II межд. конгресса «Защита-95». - М.: ГАНГ им. И.М. Губкина, 1995. -
15.Полянский Р.П., Пастернак В.И. Трубы для нефтяной и газовой промышленности за рубежом. - М.: Недра, 1979.
16.Козаченко А.Б., Никишин В.И., Поршаков Б.П. Энергетика трубопроводного транспорта газов. - М.: ГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2001.
17.Якубович В.А. Вибрационная диагностика технологического оборудования и трубопроводов компрессорных станций. Часть I. Вибрация трубопроводов центробежных нагнетателей в области низких частот. РАО ГАЗПРОМ. ДАО ОРГЭНЕРГОГАЗ. ИТЦ Оргтехдиагностика. — М.: 1988.
18.Положение по технической эксплуатации газораспределительных станций магистральных газопроводов/ В.М. Клищевская, Н.В. Ушин, Н.И. Цыбулько и др. ВРД 39-1.10-069-2002-М.: РАО ГАЗПРОМ, 2003.
19.Метод конечных элементов в задачах нефтегазопромысловой механики/ В.Н. Аликин, И.Е. Литвин, С.М. Щербаков, В.П. Бородавкин. - М.: Недра, 1992.
20.Чигарёв В.А., Кравчук A.C., Смалюк А.Ф. ANSYS для инженеров. Справ, пособие. - М.: Машиностроение-1, 2004.
21.Гриценко А.И., Хачатурян С.А. Газодинамические процессы в трубопроводах и борьба с шумом на компрессорных станциях. - М.: Недра, 2002.
22.Наука и высокие технологии России на рубеже третьего тысячелетия/ Под ред. B.JI. Макарова и А.Е. Варшавского. - М.: Наука, 2001.
23.Макеев В.П., Ершов Н.П. Конструкции из композиционных материалов в современной технике// Журнал ВХО им. Д.И. Менделеева. - № 3. - 1978.
24.Якубович В.А. О возможности возникновения высокочастотной вибрации трубопроводной обвязки ГПА при резонансах КС// В сб. Доклады XXI межд. сем. «Диагностика оборудования компрессорных станций. - Светлогорск: сентябрь 2002 г., ИРЦ ГАЗПРОМ,
25.Зенкевич O.K. Метод конечных элементов в технике. - М.: Мир, 1975. 26.Сегерлинд Л. Применение метода конечных элементов. - М.: Мир, 1977.
27.Басов. ANSYS в примерах и задачах/ Под общей редакцией Д.Г. Красковского. - М.: Компьютер-Пресс, 2002.
28.Каплун А.Б., Морозов Е.М., Олферьева М.А. ANSYS в руках инженера. Практическое руководство. - М.: Едиториал УРСС, 2003. - 272 с.
29.Бородавкин П.П., Синюков A.M. Прочность магистральных трубопроводов. - М.: Недра, 1984.
30.Каталог технологического оборудования действующих газораспределительных станций магистральных газопроводов с рекомендациями по .реконструкции и модернизации. РАО «Газпром», ДАО «Оргэнергогаз». - М.: ИРЦ Газпром, 1994.
31.Биргер И.А., Мавлютов P.P. Сопротивление материалов. - М.: Наука, 1986.
32.Морозов A.M., Никишков Г.П. Метод конечных элементов в механике разрушения. - М.: Наука, 1980.
33.Иванцов О.М., Харитонов В.И. Надежность магистральных трубопроводов. - М.: Недра, 1978.
34.Сиратори М., Миеси Г., Мацумта X. Вычислительная механика разрушения. - М.: Мир, 1986.
35.Захаров М.Н., Лукьянов В.А. Прочность сосудов и трубопроводов с дефектами стенок в нефтегазовых производствах. — М.: ГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2000.
Биргер И.А. Техническая диагностика. - М.: Машиностроение, 1978.
36.Морские нефтегазовые сооружения Бородавкин П.П москва недра 2007
37. Неразрушающий контроль и диагностика под редакцией В.В Клюева справочник .Москва издательство «Машиностроение» 2005

Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Согласен с условиями политики конфиденциальности и  пользовательского соглашения

Фрагменты работ

ВВЕДЕНИЕ
Современный этап развития нефтегазовой отрасли страны характеризуется становлением морской отрасли нефтедобычи. Наиболее важным, с точки зрения обеспечения надежности при эксплуатации морских нефтегазовых сооружений является надежность технологических трубопроводных систем. Технологические трубопроводы характерезуются сложностью конфигурации технологических трубопроводных систем, «тяжелыми» условиями эксплуатации, затруднениями при проведении обслуживания и ремонта, отсутствием достоверных критериев для оценки прочности и т.д. Основными особенностями эксплуатации морских технологических трубопроводов являются:
- высокий уровень коррозии стали трубопроводов морских сооружений, особенно в зонах, смачиваемых морской водой;
- динамические нагрузки на системы трубопроводов, обусловленные многочастотными гидродинамическими пульсациями и гидравлическими ударами при сборе и транспорте углеводородов;
- требования полного исключения аварий трубопроводных систем из-за возможного экологического ущерба окружающей среде и огромных затрат на ликвидацию аварий.
Из изложенного следует, что задача оценки прочности морских технологических трубопроводов актуальна.
Существенной особенностью морских сооружений является то, что в трубопроводных системах реализуются различные динамические режимы при транспортировке углеводородов. Так, практически все действующие системы сбора углеводородов на морских месторождениях предусматривают использование однотрубной системы. Транспортировка двух и более различных фаз в потоке приводит, как правило, к возникновению пульсаций давления потока, образованию пробок и возникновению гидравлических ударов при прорыве и т.п., то есть к существенным динамическим нагружениям. С другой стороны, в условиях морской нефтедобычи в силу ограниченности размеров платформы сложно использовать известные аппараты (депульсаторы, акустические поглотители и т.п.) для снижения и подавления динамических процессов в системах трубопроводов.
Наконец, агрессивные среды, добываемые и транспортируемые по трубопроводам, вызывают внутреннюю коррозию трубопроводов и другого оборудования. Кроме того, агрессивными являются и атмосфера, и морская вода, вызывающие коррозию наружных поверхностей труб, оборудования и строительных конструкций трубопроводных обвязок.
Анализируя сложность системы технологических трубопроводов морских нефтегазовых сооружений можно прийти к выводу: учитывая необходимую надежность и безотказность работы, а так же требования экологической безопасности, необходимо поддерживать технологические трубопроводы морских нефтегазовых сооружений в состоянии годности к эксплуатации.
В настоящее время, в связи с истечением ресурса эксплуатируемых технологических трубопроводов верхних строений морских нефтегазовых сооружений (МНГС) происходит возрастание объемов и темпов проведения работ по их обследованию с целью определения текущего технического состояния. При этом все более актуальными становятся задачи по повышению объективности и достоверности получаемых результатов диагностики технологических трубопроводов, в том числе и трубопроводов МНГС.
Разработанные в настоящее время стандарты устанавливают дополнительные повышенные требования, как к получаемым результатам Неразрушающего контроля так и к определению типов и характеристикам выявляемых дефектов.
Целью работы является анализ вопроса диагностики технического состояния технологических трубопроводов верхних строений МНГС.
Для достижения цели работы поставлены задачи:
- Оценка работоспособности технологических трубопроводов морских и нефтегазовых сооружений;
- обоснование необходимости диагностики технологических трубопроводов верхних строений МНГС;
- нахождение основных причин появления дефектов трубопроводов;
- обзор и анализ применяемых методов диагностики трубопроводов МНГС;
- выбор наиболее технически совершенного метода.
Для выбора наиболее технически совершенного метода диагностики технологических трубопроводов верхних строений МНГС необходимо провести исследование.
Целью исследования является:
- разработка алгоритма проведения диагностического обследования:
- сравнение методов диагностики трубопроводов МНГС ;
- выбор метода, который является наиболее достоверным методом определения технического состояния трубопроводов МНГС;
- обоснование возможности применения метода диагностики.
Объектом исследования работы являются технологические трубопроводы верхних строений МНГС и их обвязка.
Предметом исследования работы являются методы проведения диагностики трубопроводов МНГС и система диагностики трубопроводов МНГС в целом.

Оглавление
ВВЕДЕНИЕ 4
ГЛАВА I. Оценка работоспособности технологических трубопроводов морских и нефтегазовых сооружений 7
1.1. Обзор оценки работоспособности 7
1.2. Коррозия технологических трубопроводов 8
1.3. Особенности оценки прочности трубопроводов 10
1.4. Дефекты объекта диагностирования 12
ГЛАВА 2. Техническая диагностика трубопроводных систем верхних строений МНГС 14
2.1 Общие понятия диагностики трубопроводов 14
2.2 Компьютерное моделирование надежности трубопроводной обвязки верхних строений МНГС при помощи пакета ANSYS и Fluent 16
2.2.1 Расчет коэффициента нагрузки в системе обвязки 18
2.2.2 Фактические последствия концентраций напряжений в технологических трубопроводах 20
2.2.3.Вывод из моделирования 22
2.3. Разработка алгоритма диагностики трубопроводов верхних строений МНГС 23
ГЛАВА 3. Исследование методов диагностики трубопроводов верхних строений МНГС 24
3.1. Выбор наиболее технически совершенного метода 24
3.1.1 Отличие традиционного метода ультразвукового контроля от ультразвукового контроля с применением ФАР 25
3.2 Контроль технического состояния пластиковых труб 25
3.3 Контроль сварных соединений технологических трубопроводов 28
3.4 Диагностика оборудования трубопроводной системы верхних строений МНГС 31
ГЛАВА 4. Практическое равнение традиционного УЗК с УЗК на фазированных антенных решетках при контроле трубопроводов верхних строений МНГС 35
4.1 Аннотация исследования 35
4.2 Сравнение методов 35
4.3 Контроль сварного соединения с искусственно созданными дефектами при помощи УЗК на ФАР 40
4.4. УЗК контроль монолитных металлических конструкции с использованием ФАР 42
ГЛАВА 5. Экономическое обоснование 45
5.1. Методика оценки экономической целесообразности применения УЗК на ФАР при проведении диагностики 45
5.2 Сводные сметные затраты диагностику трубопроводов верхних строений МНГС 47
5.3. Вероятные аварийные ситуации и их последствия 49
5.4. Расчет возможного ущерба от аварии на МНГС 50
5.4.1. Структура ущерба 50
5.4.2. Обоснование прямых потерь (ущерба) 53
5.4.3. Затраты на локализацию (ликвидацию) и расследование аварии 54
5.4.4. Социально-экономические потери 54
5.4.5. Убытки от косвенного ущерба 55
5.4.6. Экологический ущерб 55
5.4.7. Потери при выбытии трудовых ресурсов 56
5.4.8. Суммарный ущерб 56
5.5. Условная экономия средств (сокращение ущерба) в результате снижения аварийности МНГС 57
ГЛАВА 6. Безопасность жизнедеятельности и охрана труда 59
6.1 Описание системы Ч-М-С 59
6.1.1 «Ч»- Описание элемента «Человек» 59
6.1.2. «М»-Описание элемента «Машина» 61
6.1.3 «С» - Описание элемента «Среда» 61
6.2 Опасные и вредные факторы 61
6.3 Причины возникновения факторов аварии 62
6.4 Оценка риска 62
6.4.1. Формирование фрейма по степени тяжести последствий от воздействия факторов 62
6.4.2. Формирование матриц 62
6.4.5 Техника безопасности при ультразвуковом контроле 64
6.5. Оформление результатов УЗК контроля на МНГС 64
ГЛАВА 7. Экология 66
7.1 Общие понятия об экологии и экологической безопасности МНГС 66
7.2. Охрана атмосферного воздуха 67
7.2.1 Характеристика видов и источников воздействия на атмосферный воздух 67
7.2.2 Оценка воздействия и обоснование мероприятий по охране атмосферного воздуха 68
7.3. Охрана поверхностных вод 68
7.3.1 Воздействие проектируемого объекта на состояние вод 68
7.3.2 Мероприятия по охране морских вод, окружающих МНГС 69
7.4 Охрана окружающей среды при складировании (утилизации) отходов производства и потребления 70
7.4.1 Перечень отходов образующихся при строительстве резервной нитки газопровода 70
7.4.2 Направления обращения с отходами 71
7.4.3 Мероприятия по охране окружающей среды от отходов 72
7.5. Организация мониторинга в диагностики трубопроводов МНГС 72
ЗАКЛЮЧЕНИЕ 74
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА 75

ЗАКЛЮЧЕНИЕ
В работе предложен подход для комплексного диагностического сопровождения технологических трубопроводных систем заключающийся в прямом измерении основных параметров: пространственного положения, эксплуатационных напряжений, размеров дефектов, твердости стали; математическом моделировании системы для оценки прочности; разработки технических решений по обеспечению работоспособности конструкций.
Эти измерения и оценки позволяют получить полное представление о состоянии и положении трубопроводной системы.
Исследована универсальная регрессионная модель расчетного напряжения в местах появления дефекта и при его наличии. В зависимости от базовых геометрических параметров дефекта для существующего диапазона типоразмеров трубопровода. Аналитически, проводя исследование, установлен эффект снижения уровня концентрации напряжений в 1,2-1,5 раза за счет учета пластических свойств стали и механизм подавления процессов трещинообразования в трубопроводе при использовании низколегированных.
Практическим исследованием различных методов диагностики технологических трубопроводов, элементов трубопроводов, а так же оборудования верхних строений МНГС был выбран наиболее технически приемлемый и экономически рентабельный метод диагностики элементов верхних строений МНГС.


ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА
1.Бородавкин П.П., Березин В.Л., Шадрин О.Б. Подводные трубопроводы. - М.: Недра, 1979.
2.Гусейнов Ч.С., Иванец В.К., Иванец Д.В. Обустройство морских нефтегазовых месторождений. - М.: ГУП Изд-во «Нефть и газ РГУ нефти и газа им. И.М. Губкина, 2003.
3.Харионовский В.В. Надежность и ресурс конструкций газопроводов. - М.: Недра, 2000.
4.Литвин И.Е., Аликин В.Н. Оценка показателей надежности магистральных трубопроводов. - М.: Недра, 2003.
5.Якубович В.А. Диагностическое обслуживание трубопроводных систем компрессорных цехов газотранспортных и газодобывающих предприятий. Автореф. дисс. соиск. уч. степ. докт. техн. наук. - М.: РГУ нефти и газа им. И.М. Губкина, 2004..
6.Гриценко А.И., Харченко Ю.А., Клапчук О.В. Гидродинамика газожидкостных смесей в скважинах и трубопроводах. - М.: Недра, 1994.
7.Харченко Ю.А. Энергосберегающие системы сбора углеводородов на месторождениях континентального шельфа. Автореф. дисс. соиск. уч. степ. докт. техн. наук. - М.: РГУ нефти и газа им. И.М. Губкина,
8.Басарыгин Ю.М., Будников В.Ф., Булатов А.И. Теория и практика предупреждения осложнений и ремонта скважин при их строительстве и эксплуатации: Справ, пособие: в 6 т. - М.: Недра, 2004. - Т. 6.
9.Алехин М.И., Будников В.Ф., Щербина М.М. О причинах коррозионного разрушения оборудования на участках термических методов добычи нефти// Сб. науч. тр. Вопросы технологии и техники добычи нефти термическим методами. - М.: ВНИИОЭНГ, 1989.
10.Аварии и несчастные случаи в нефтяной и газовой промышленности России/ Под ред. Ю.А. Дадонова, В.Я. Кершенбаума. - М.: Техно- нефтегаз, 2001.
11.Скугорова Л.П. Материалы для сооружений газонефтепроводов и хранилищ . - М.: Недра, 1975.
12.Амиров А.Д. Техника и технология освоения и эксплуатации глубоких скважин. - М.: Недра, 1970.
13.Горяинов Ю.А., Федоров A.C., Васильев Г.Г. и др. Морские трубопроводы. — М.: Недра, 2001.
14. М.Новаковский В.М.Преодоление коррозии — важнейшая задача науки/ М-лы II межд. конгресса «Защита-95». - М.: ГАНГ им. И.М. Губкина, 1995. -
15.Полянский Р.П., Пастернак В.И. Трубы для нефтяной и газовой промышленности за рубежом. - М.: Недра, 1979.
16.Козаченко А.Б., Никишин В.И., Поршаков Б.П. Энергетика трубопроводного транспорта газов. - М.: ГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2001.
17.Якубович В.А. Вибрационная диагностика технологического оборудования и трубопроводов компрессорных станций. Часть I. Вибрация трубопроводов центробежных нагнетателей в области низких частот. РАО ГАЗПРОМ. ДАО ОРГЭНЕРГОГАЗ. ИТЦ Оргтехдиагностика. — М.: 1988.
18.Положение по технической эксплуатации газораспределительных станций магистральных газопроводов/ В.М. Клищевская, Н.В. Ушин, Н.И. Цыбулько и др. ВРД 39-1.10-069-2002-М.: РАО ГАЗПРОМ, 2003.
19.Метод конечных элементов в задачах нефтегазопромысловой механики/ В.Н. Аликин, И.Е. Литвин, С.М. Щербаков, В.П. Бородавкин. - М.: Недра, 1992.
20.Чигарёв В.А., Кравчук A.C., Смалюк А.Ф. ANSYS для инженеров. Справ, пособие. - М.: Машиностроение-1, 2004.
21.Гриценко А.И., Хачатурян С.А. Газодинамические процессы в трубопроводах и борьба с шумом на компрессорных станциях. - М.: Недра, 2002.
22.Наука и высокие технологии России на рубеже третьего тысячелетия/ Под ред. B.JI. Макарова и А.Е. Варшавского. - М.: Наука, 2001.
23.Макеев В.П., Ершов Н.П. Конструкции из композиционных материалов в современной технике// Журнал ВХО им. Д.И. Менделеева. - № 3. - 1978.
24.Якубович В.А. О возможности возникновения высокочастотной вибрации трубопроводной обвязки ГПА при резонансах КС// В сб. Доклады XXI межд. сем. «Диагностика оборудования компрессорных станций. - Светлогорск: сентябрь 2002 г., ИРЦ ГАЗПРОМ,
25.Зенкевич O.K. Метод конечных элементов в технике. - М.: Мир, 1975. 26.Сегерлинд Л. Применение метода конечных элементов. - М.: Мир, 1977.
27.Басов. ANSYS в примерах и задачах/ Под общей редакцией Д.Г. Красковского. - М.: Компьютер-Пресс, 2002.
28.Каплун А.Б., Морозов Е.М., Олферьева М.А. ANSYS в руках инженера. Практическое руководство. - М.: Едиториал УРСС, 2003. - 272 с.
29.Бородавкин П.П., Синюков A.M. Прочность магистральных трубопроводов. - М.: Недра, 1984.
30.Каталог технологического оборудования действующих газораспределительных станций магистральных газопроводов с рекомендациями по .реконструкции и модернизации. РАО «Газпром», ДАО «Оргэнергогаз». - М.: ИРЦ Газпром, 1994.
31.Биргер И.А., Мавлютов P.P. Сопротивление материалов. - М.: Наука, 1986.
32.Морозов A.M., Никишков Г.П. Метод конечных элементов в механике разрушения. - М.: Наука, 1980.
33.Иванцов О.М., Харитонов В.И. Надежность магистральных трубопроводов. - М.: Недра, 1978.
34.Сиратори М., Миеси Г., Мацумта X. Вычислительная механика разрушения. - М.: Мир, 1986.
35.Захаров М.Н., Лукьянов В.А. Прочность сосудов и трубопроводов с дефектами стенок в нефтегазовых производствах. — М.: ГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М. Губкина, 2000.
Биргер И.А. Техническая диагностика. - М.: Машиностроение, 1978.
36.Морские нефтегазовые сооружения Бородавкин П.П москва недра 2007
37. Неразрушающий контроль и диагностика под редакцией В.В Клюева справочник .Москва издательство «Машиностроение» 2005

Купить эту работу

Система диагностика технологических трубопроводов верхних строений МНГС

2240 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

22 мая 2017 заказчик разместил работу

Выбранный эксперт:

Автор работы
EkaterinaKonstantinovna
4.3
Большой опыт в написании работ, очень давно работаю на этом ресурсе, выполнила более 15000 заказов
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
2240 ₽ Цена от 3000 ₽

5 Похожих работ

Дипломная работа

Оформление технического плана с постановкой на кадастровый учет

Уникальность: от 40%
Доступность: сразу
1200 ₽
Дипломная работа

Проект электрокоагулятора установки предварительного сброса воды Ванкорского производственного участка ООО «РН-Ванкор»

Уникальность: от 40%
Доступность: сразу
3500 ₽
Дипломная работа

Применение результатов лазерного локационного метода съемки при определении координат земельного участка

Уникальность: от 40%
Доступность: сразу
2800 ₽
Дипломная работа

Устройство и организация использования земель Каменского МО Тюменского района с привлечением инвестиционных проектов

Уникальность: от 40%
Доступность: сразу
900 ₽
Дипломная работа

"Программное обеспечение используемое при составлении и обновлении цифровых-топографических планов м 1:500".

Уникальность: от 40%
Доступность: сразу
2800 ₽

Отзывы студентов

Отзыв Андрей333 об авторе EkaterinaKonstantinovna 2015-02-16
Дипломная работа

Очень хорошо.Отличный Автор.

Общая оценка 5
Отзыв qweasd об авторе EkaterinaKonstantinovna 2017-06-28
Дипломная работа

Благодарю за прекрасную работу!Работа выполнена качественно и в срок.Рекомендую.

Общая оценка 5
Отзыв Eval об авторе EkaterinaKonstantinovna 2016-05-03
Дипломная работа

автор молодец! довольна работой

Общая оценка 5
Отзыв iva020384 об авторе EkaterinaKonstantinovna 2017-01-14
Дипломная работа

я очень довольна работой

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Определение деформации объектов фотограм-метрическим способом с использованием цифро-вых фотограмметрических станций

Уникальность: от 40%
Доступность: сразу
6300 ₽
Готовая работа

комплекс инженерно-геодезических изысканий для реконструкции котельной и тепловых сетей с.Усть-Тарка новосибирской области

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Геодезическое обеспечение строительства автомобильной дороги на участке по ул. Джабаева в г. Волгограде

Уникальность: от 40%
Доступность: сразу
6700 ₽
Готовая работа

Проект создания электронной карты масштаба 1:100000 на Печорский район республики Коми (Сыня)

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Геодезические работы при строительстве жилого дома

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Критерии и индикаторы устойчивого лесопользования

Уникальность: от 40%
Доступность: сразу
6000 ₽
Готовая работа

Комплекс геодезических работ при изысканиях под строительство железнодорожных путей станция Денисовка.

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Анализ современного использования и перспективы развития территории сельского поселения (на примере микрорайона села Червишево Тюменского района)

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Государственная кадастровая оценка земель сельскохозяйственного назначения Республики Ингушетия

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

ОПРЕДЕЛЕНИЕ СТОИМОСТИ ОБЪЕКТОВ НЕДВИЖИМОСТИ ПРОМЫШЛЕННОГО НАЗНАЧЕНИЯ (Оценка недвижимого имущества)

Уникальность: от 40%
Доступность: сразу
2760 ₽
Готовая работа

Геодезические работы при реконструкции автомобильной дороги

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Применение результатов лазерного локационного метода съемки при определении координат земельного участка

Уникальность: от 40%
Доступность: сразу
2800 ₽