Этот заказ уже выполнен на сервисе Автор24
На нашем сайте вы можете заказать учебную работу напрямую у любого из 45000 авторов, не переплачивая агентствам и другим посредникам. Ниже приведен пример уже выполненной работы нашими авторами!
Узнать цену на свою работу

Математическое программирование (4 задачи)

Номер заказа
120572
Создан
6 марта 2014
Выполнен
7 марта 2014
Стоимость работы
250
Проблема по эконометрике. Срочно закажу контрольную работу по эконометрике. Есть буквально 1 день. Тема работы «Математическое программирование (4 задачи)».
Всего было
18 предложений
Заказчик выбрал автора
Этот заказ уже выполнен на сервисе Автор24
На нашем сайте вы можете заказать учебную работу напрямую у любого из 45000 авторов, не переплачивая агентствам и другим посредникам. Ниже приведен пример уже выполненной работы нашими авторами!
Узнать цену на свою работу
Или вы можете купить эту работу...
Страниц: 22
Оригинальность: 34% (no etxt)
250
Не подошла
данная работа?
Вы можете заказать учебную работу
на любую интересующую вас тему
Заказать новую работу

Содержание
Задача 11. Задача кольцевого маршрута
Задача 12. Эффективность сферы реальных услуг
Задача 13. Эффективность сферы профилактического обслуживания
Задача 14. Определение оптимального размера автопарка
Список использованной литературы
Задача 11
Задача кольцевого маршрута

Дана схема движения транспорта с n = 5 пунктами и расстояниями между ними, представленными в матрице расстояний (табл.6). Построить кольцевой маршрут объезда всех пунктов наименьшей длины.

Таблица 6

Расстояние
8
Элемен-ты матрицы А11
А12 7
А13 12
А14 17
А15 9
А21 8
А22
А23 6
А24 10
А25 4
А31 8
А32 11
А33


Расстояние
8
Элементы матрицы
А34 14
А35 7
А41 11
А42 8
А43 12
А44
А45 16
А51 12
А52 11
А53 12
А54 9
А55




Задача 12
Эффективность сферы реальных услуг

Автомашина при ее эксплуатации может находиться в следующих со-стояниях:
Х0 – исправна;
Х1 – неисправна, проходит осмотр, который проводится с целью определения вида ремонта;
Х2 – неисправна, проходит капитальный ремонт;
Х3 – неисправна, проходит средний ремонт;
Х4 – неисправна, проходит те Показать все
Задача 11
Задача кольцевого маршрута

Дана схема движения транспорта с n = 5 пунктами и расстояниями между ними, представленными в матрице расстояний (табл.6). Построить кольцевой маршрут объезда всех пунктов наименьшей длины.

Таблица 6

Расстояние
8
Элемен-ты матрицы А11
А12 7
А13 12
А14 17
А15 9
А21 8
А22
А23 6
А24 10
А25 4
А31 8
А32 11
А33


Расстояние
8
Элементы матрицы
А34 14
А35 7
А41 11
А42 8
А43 12
А44
А45 16
А51 12
А52 11
А53 12
А54 9
А55




Задача 12
Эффективность сферы реальных услуг

Автомашина при ее эксплуатации может находиться в следующих со-стояниях:
Х0 – исправна;
Х1 – неисправна, проходит осмотр, который проводится с целью определения вида ремонта;
Х2 – неисправна, проходит капитальный ремонт;
Х3 – неисправна, проходит средний ремонт;
Х4 – неисправна, проходит те Показать все
Список использованной литературы

1. Акулич И.Л. Математическое программирование в примерах и зада-чах. М.: Высшая школа, 1986. 320с.
2. Белоусов Е.Г. и др. Математическое моделирование экономических процессов. М.: Изд-во МГУ, 1990. 363 с.
3. Венцель Е.С. Введение в исследование операций. М.: Сов. радио, 1972. 551с.
4. Воробьев Н.Н. Теория игр. М.: Знание, 1976. 320 с.
5. Дюбин Г.Н. Введение в теорию игр.–М.: Наука, 1981.- 334 с.
6. Интриллигатор Н. Математические методы оптимизации и экономи-ческая теория. М.: АйрисПресс, 2002. 565 с.
7. Калихман И.Л. Линейная алгебра и программирование. М.: Высшая школа, 1967. 427с.
8. Калихман И.Л. Сборник по математическому программированию. М.: Высшая школа, 1975. 272с.
9. Калихман И.Л., Войтенко М.А. Динамическое программирование в примерах и задач Показать все
M
4
2
2
M
dj
2
В результате получим другую сокращенную матрицу (3 x 3), которая подлежит операции приведения.
После операции приведения сокращенная матрица будет иметь вид:
i j
1
3
5
di
2
M
3
M
4
2
2
M
2
dj
2
Поскольку нижняя граница этого подмножества (1,2) меньше, чем подмножества (1*,2*), то ребро (1,2) включаем в маршрут.
Шаг №3. Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
i j
1
3
5
di
2
M
0(0)
0(0)
3
0(0)
M
0(0)
4
0(0)
0(0)
M
dj
Наибольшая сумма констант приведения равна (0 + 0) = 0 для ребра (2,3), следовательно, множество разбивается на два подмножества (2,3) и (2*,3*).
Нижняя граница гамильтоновых циклов этого подмножества:
i j
1
3
5
di
2
M
M
3
Показать все
Автор24 - это фриланс-биржа. Все работы, представленные на сайте, загружены нашими пользователями, которые согласились с правилами размещения работ на ресурсе и обладают всеми необходимыми авторскими правами на данные работы. Скачивая работу вы соглашаетесь с тем что она не будет выдана за свою, а будет использована использовать исключительно как пример или первоисточник с обязательной ссылкой на авторство работы. Если вы правообладатель и считаете что данная работа здесь размещена без вашего разрешения - пожалуйста, заполните форму и мы обязательно удалим ее с сайта. Заполнить форму
Оценим бесплатно
за 10 минут
Эта работа вам не подошла?
У наших авторов вы можете заказать любую учебную работу от 200 руб.
Оформите заказ и авторы начнут откликаться уже через 10 минут!
Заказать контрольную работу