Этот заказ уже выполнен на сервисе Автор24
На нашем сайте вы можете заказать учебную работу напрямую у любого из 45000 авторов, не переплачивая агентствам и другим посредникам. Ниже приведен пример уже выполненной работы нашими авторами!
Узнать цену на свою работу

Теория вероятностей (2 задачи)

Номер заказа
131552
Создан
15 августа 2014
Выполнен
2 января 1970
Стоимость работы
100
Проблема по высшей математике. Срочно закажу контрольную работу по высшей математике. Есть буквально 1 день. Тема работы «Теория вероятностей (2 задачи)».
Всего было
18 предложений
Заказчик выбрал автора
Этот заказ уже выполнен на сервисе Автор24
На нашем сайте вы можете заказать учебную работу напрямую у любого из 45000 авторов, не переплачивая агентствам и другим посредникам. Ниже приведен пример уже выполненной работы нашими авторами!
Узнать цену на свою работу
Или вы можете купить эту работу...
Страниц: 2
Оригинальность: Неизвестно
100
Не подошла
данная работа?
Вы можете заказать учебную работу
на любую интересующую вас тему
Заказать новую работу

Задание №1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
K=4, p=0.9
Задание №2. Продолжительность телефонного разговора распределена по показательному закону с параметром 0,25 . Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Задание №1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
K=4, p=0.9
Задание №2. Продолжительность телефонного разговора распределена по показательному закону с параметром 0,25 . Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Задание №1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
K=4, p=0.9
Задание №2. Продолжительность телефонного разговора распределена по показательному закону с параметром 0,25 . Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Задание №1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
K=4, p=0.9
Задание №2. Продолжительность телефонного разговора распределена по показательному закону с параметром 0,25 . Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Задание №2. Продолжительность телефонного разговора распределена по показательному закону с параметром . Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Решение.
Показательным называется распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью
где - положительное число.
Закон распределения:
Автор24 - это фриланс-биржа. Все работы, представленные на сайте, загружены нашими пользователями, которые согласились с правилами размещения работ на ресурсе и обладают всеми необходимыми авторскими правами на данные работы. Скачивая работу вы соглашаетесь с тем что она не будет выдана за свою, а будет использована исключительно как пример или первоисточник с обязательной ссылкой на авторство работы. Если вы правообладатель и считаете что данная работа здесь размещена без вашего разрешения - пожалуйста, заполните форму и мы обязательно удалим ее с сайта. Заполнить форму
Оценим бесплатно
за 10 минут
Эта работа вам не подошла?
У наших авторов вы можете заказать любую учебную работу от 200 руб.
Оформите заказ и авторы начнут откликаться уже через 10 минут!
Заказать контрольную работу